Kx b что такое k. Функции и графики

Научитесь брать производные от функций. Производная характеризует скорость изменения функции в определенной точке, лежащей на графике этой функции. В данном случае графиком может быть как прямая, так и кривая линия. То есть производная характеризует скорость изменения функции в конкретный момент времени. Вспомните общие правила, по которым берутся производные, и только потом переходите к следующему шагу.

  • Прочитайте статью .
  • Как брать простейшие производные, например, производную показательного уравнения, описано . Вычисления, представленные в следующих шагах, будут основаны на описанных в ней методах.

Научитесь различать задачи, в которых угловой коэффициент требуется вычислить через производную функции. В задачах не всегда предлагается найти угловой коэффициент или производную функции. Например, вас могут попросить найти скорость изменения функции в точке А(х,у). Также вас могут попросить найти угловой коэффициент касательной в точке А(х,у). В обоих случаях необходимо брать производную функции.

Возьмите производную данной вам функции. Здесь строить график не нужно – вам понадобится только уравнение функции. В нашем примере возьмите производную функции f (x) = 2 x 2 + 6 x {\displaystyle f(x)=2x^{2}+6x} . Берите производную согласно методам, изложенным в упомянутой выше статье:

В найденную производную подставьте координаты данной вам точки, чтобы вычислить угловой коэффициент. Производная функции равна угловому коэффициенту в определенной точке. Другими словами, f"(х) – это угловой коэффициент функции в любой точке (x,f(x)). В нашем примере:

  • Если возможно, проверьте полученный ответ на графике. Помните, что угловой коэффициент можно вычислить не в каждой точке. Дифференциальное исчисление рассматривает сложные функции и сложные графики, где угловой коэффициент можно вычислить не в каждой точке, а в некоторых случаях точки вообще не лежат на графиках. Если возможно, используйте графический калькулятор, чтобы проверить правильность вычисления углового коэффициента данной вам функции. В противном случае проведите касательную к графику в данной вам точке и подумайте, соответствует ли найденное вами значение углового коэффициента тому, что вы видите на графике.

    • Касательная будет иметь тот же угловой коэффициент, что и график функции в определенной точке. Для того, чтобы провести касательную в данной точке, двигайтесь вправо/влево по оси Х (в нашем примере на 22 значения вправо), а затем вверх на единицу по оси Y. Отметьте точку, а затем соедините ее с данной вам точкой. В нашем примере соедините точки с координатами (4,2) и (26,3).
  • «Критические точки функции» - Критические точки. Среди критических точек есть точки экстремума. Необходимое условие экстремума. Ответ: 2. Определение. Но, если f" (х0) = 0, то необязательно, что точка х0 будет точкой экстремума. Точки экстремума (повторение). Критические точки функции Точки экстремумов.

    «Координатная плоскость 6 класс» - Математика 6 класс. 1. Х. 1.Найдите и запишите координаты точек A,B, C,D: -6. Координатная плоскость. О. -3. 7. У.

    «Функции и их графики» - Непрерывность. Наибольшее и наименьшее значение функции. Понятие обратной функции. Линейная. Логарифмическая. Монотонность. Если k > 0, то образованный угол острый, если k < 0, то угол тупой. В самой точке x = a функция может существовать, а может и не существовать. Х1, х2, х3 – нули функции у = f(x).

    «Функции 9 класс» - Допустимые арифметические действия над функциями. [+] – сложение, [-] – вычитание, [*] – умножение, [:] – деление. В таких случаях говорят о графическом задании функции. Образование класса элементарных функций. Степенная функция у=х0,5. Иовлева Максима Николаевича, учащегося 9 класса РМОУ Радужская ООШ.

    «Урок Уравнение касательной» - 1. Уточнить понятие касательной к графику функции. Лейбниц рассматривал задачу о проведении касательной к произвольной кривой. АЛГОРИТМ СОСТАВЛЕНИЯ УРАВНЕНИЯ КАСАТЕЛЬНОЙ К ГРАФИКУ ФУНКЦИИ у=f(x). Тема урока: Тест: найти производную функции. Уравнение касательной. Флюксия. 10 класс. Расшифруйте, как исаак ньютон назвал производную функцию.

    «Построить график функции» - Дана функция y=3cosx. График функции y=m*sin x. Постройте график функции. Содержание: Дана функция: y=sin (x+?/2). Растяжение графика y=cosx по оси y. Чтобы продолжить нажмите на л. Кнопку мыши. Дана функция y=cosx+1. Смещения графика y=sinx по вертикали. Дана функция y=3sinx. Смещение графика y=cosx по горизонтали.

    Всего в теме 25 презентаций

    Удобная для того, чтобы, задав конкретное значение независимой переменной х (аргумента), вычислить соответствующее значение зависимой переменной у. Например, если дана функция у = х 2 , т.е. f(x) = х 2 , то при х = 1 получаем у = 1 2 = 1; короче это записывают так: f(1) = 1. При х = 2 получаем f(2)= 2 2 = 4, т. е. у = 4; при х = - 3 получаем f(- 3) = (- З) 2 = 9, т. е. у = 9, и т. д.

    Уже в 7-м классе мы с вами начали понимать, что в равенстве у = f(х) правая часть, т.е. выражение f(x), не исчерпывается перечисленными выше четырьмя случаями (С, kx, kx + m, х 2).

    Так например, нам уже встречались кусочные функции, т. е. функции , заданные разными формулами на разных промежутках. Вот одна из таких функций:у = f(x), где

    Помните, как строить графики таких функций? Сначала надо построить параболу у = х 2 и взять ее часть при х < 0 (левая ветвь параболы, рис. 1), затем надо построить прямую у = 2х и взять ее часть при х > 0 (рис. 2). И, наконец, надо обе выделенные части объединить на одном рисунке, т. е. построить на одной координатной плоскости (см. рис. 3).

    Теперь наша задача состоит в следующем: пополнить запас изученных функций. В реальной жизни встречаются процессы, описываемые различными математическими моделями вида у = f(x), не только теми, что мы перечислили выше. В этом параграфе мы рассмотрим функцию у = kx 2 , где коэффициент k - любое отличное от нуля число.


    На самом деле функция у = kx 2 в одном случае вам немного знакома. Смотрите: если k = 1, то получаем у = х 2 ; эту функцию вы изучили в 7-м классе и, наверное, помните, что ее графиком является парабола (рис. 1). Обсудим, что происходит при других значениях коэффициента k.

    Рассмотрим две функции: у = 2х 2 и у = 0,5x 2 . Составим таблицу значений для первой функции у = 2х 2:

    Построим точки (0; 0), (1; 2), (-1; 2), (2; 8), (-2; 8), (1,5; 4,5), (-1,5; 4,5) на координатной плоскости (рис. 4); они намечают некоторую линию, проведем ее (рис. 5).

    Составим таблицу значений для второй функции у = 0,5x 2:

    Построим точки (0; 0), (1; 0,5), (-1; 0,5), (2; 2), (-2; 2), C; 4,5), (-3; 4,5) на координатной плоскости (рис. 6); они намечают некоторую линию, проведем ее (рис. 7)

    .

    Точки, изображенные на рис. 4 и 6, называют иногда контрольными точками для графика соответствующей функции.

    Сравните рисунки 1, 5 и 7. Не правда ли, проведенные линии похожи? Каждую из них называют параболой; при этом точку (0; 0) называют вершиной параболы, а ось у - осью симметрии параболы. От величины коэффициента k зависит «скорость устремления» ветвей параболы вверх или, как еще говорят, «степень крутизны» параболы. Это хорошо видно на рис. 8, где все три построенные выше параболы расположены на одной координатной плоскости.

    Точно так же обстоит дело с любой другой функцией вида у = kx 2 , где k > 0. Графиком ее является парабола с вершиной в начале координат , ветви параболы направлены вверх, причем тем круче, чем больше коэффициент k. Ось у является осью симметрии параболы. Кстати, ради краткости речи математики часто вместо длинной фразы «парабола, служащая графиком функции у = kx 2 », говорят «парабола у = кх 2 », а вместо термина «ось симметрии параболы» используют термин «ось параболы».

    Вы замечаете, что имеется аналогия с функцией у = kx? Если k > 0, то графиком функции у = kx является прямая, проходящая через начало координат (помните, мы говорили коротко:прямая у = kx), причем и здесь от величины коэффициента k зависит «степень крутизны» прямой. Это хорошо видно на рис. 9, где в одной системе координат изображены графики линейных функций у = kx при трех значениях коэффициента

    Вернемся к функции у = kx 2 . Выясним, как обстоит дело в случае отрицательного коэффициента ft. Построим, например, график функции

    у = - х 2 (здесь k = - 1). Составим таблицу значении:

    Отметим точки (0; 0), (1; -1), (-1; -1), (2; -4), (-2; -4), (3; -9), (- 3; - 9) на координатной плоскости (рис. 10); они намечают некоторую линию, проведем ее (рис. 11). Это - парабола с вершиной в точке (0; 0), ось у - ось симметрии, но в отличие от случая, когда k > 0, на этот раз ветви параболы направлены вниз. Аналогично обстоит дело и для других отрицательных значений коэффициента k.

    Итак, графиком функции является парабола с вершиной в начале координат; ось у является осью параболы; ветви параболы направлены вверх приk>0 u вниз при k<0.

    Отметим еще, что парабола у = kx 2 касается оси х в точке (0; 0), т. е. одна ветвь параболы плавно переходит в другую, как бы прижимаясь к оси х.

    Если построить в одной системе координат графики функций у = х 2 и у = - х2, то нетрудно заметить, что эти параболы симметричны друг другу относительно оси х, что хорошо видно на рис. 12. Точно так же симметричны друг другу относительно оси х параболы у = 2х 2 и у = - 2х 2 (не поленитесь, постройте эти
    две параболы в одной системе координат и убедитесь в справедливости сделанного утверждения).

    Вообще, график функции у = - f(x) симметричен графику функции у = f(x) относительно оси абсцисс.

    Свойства функции у = kx 2 при k > 0

    Описывая свойства этой функции, мы будем опираться на ее геометрическую модель - параболу (рис. 13).

    1. Так как для любого значения х по формуле у = kx 2 можно вычислить соответствующее значение у, то функция определена в любой точке х (при любом значении аргумента х). Короче это записывают так: область определения функции есть (-оо, +оо), т. е. вся координатная прямая.

    2. у = 0 при х = 0; у > О при . Это видно и по графику функции (он весь расположен выше оси х), но можно обосновать и без помощи графика: если

    То kx 2 > О как произведение двух положительных чисел k и х 2 .

    3. у = kx 2 - непрерывная функция. Напомним, что этот термин мы рассматриваем пока как синоним предложения «график функции есть сплошная линия, которую можно начертить, не отрывая карандаша от бумаги». В старших классах будет дано более точное математическое истолкование понятия непрерывности функции, не опирающееся на геометрическую иллюстрацию.

    4.y/ наим = 0 (достигается при х = 0); у наи6 не существует.

    Напомним, что {/наим - это наименьшее значение функции, а Унаиб. - наибольшее значение функции на заданном промежутке; если промежуток не указан, то унаим- и у наиб, - соответственно наименьшее и наибольшее значения функции в области определения.

    5. Функция у = kx 2 возрастает при х > О и убывает при х < 0.

    Напомним, что в курсе алгебры 7-го класса мы договорились называть функцию, график которой на рассматриваемом промежутке идет слева направо как бы «в горку», возрастающей, а функцию , график которой на рассматриваемом промежутке идет слева направо как бы «под горку», - убывающей. Более точно можно сказать так: функцию у = f (x) называют возрастающей на промежутке X, если на этом промежутке большему значению аргумента соответствует большее значение функции; функцию у = f (x) называют убывающей на промежутке X, если на этом промежутке большему значению аргумента соответствует меньшее значение функции.

    В учебнике «Алгебра-7» процесс перечисления свойств функции мы называли чтением графика. Процесс чтения графика будет у нас постепенно становиться все насыщеннее и интереснее - по мере изучения новых свойств функций. Те пять свойств, которые перечислены выше, мы обсуждали в 7-м классе для изученных там функций. Добавим одно новое свойство.

    Функцию у = f(x) называют ограниченной снизу, если все значения функции больше некоторого числа. Геометрически это означает, что график функции расположен выше некоторой прямой , параллельной оси х.

    А теперь посмотрите: график функции у = kx 2 расположен выше прямой у = - 1 (или у = - 2, это неважно) - она проведена на рис. 13. Значит, у - kx2 (k > 0) - ограниченная снизу функция.

    Наряду с функциями, ограниченными снизу, рассматривают и функции, ограниченные сверху. Функцию у - f(x) называют ограниченной сверху, если все значения функции меньше некоторого числа. Геометрически это означает, что график функции расположен ниже некоторой прямой, параллельной оси х.
    Имеется ли такая прямая для параболы у = kx 2 , где k > 0? Нет. Это значит, что функция не является ограниченной сверху.

    Итак, мы получили еще одно свойство, добавим его к тем пяти, что указаны выше.

    6. Функция у = kx 2 (k > 0) ограничена снизу и не ограничена сверху.

    Свойства функции у = kx 2 при k < 0

    При описании свойств этой функции мы опираемся на ее геометрическую модель - параболу (рис. 14).

    1.Область определения функции - (-оо, +оо).

    2. у = 0 при х = 0; у < 0 при .

    З.у = kx 2 - непрерывная функция.
    4. у наи6 = 0 (достигается при х = 0), унаим не существует.

    5. Функция возрастает при х < 0, убывает при х > 0.

    6.Функция ограничена сверху и не ограничена снизу.

    Дадим пояснения последнему свойству: имеется прямая, параллельная оси х (например, у = 1, она проведена на рис. 14), такая, что вся парабола лежит ниже этой прямой; это значит, что функция ограничена сверху. С другой стороны, нельзя провести такую прямую, параллельную оси х, чтобы вся парабола была расположена выше этой прямой; это значит, что функция не ограничена снизу.

    Использованный выше порядок ходов при перечислении свойств функции не является законом, пока он сложился хронологически именно таким.

    Более-менее определенный порядок ходов мы выработаем постепенно и унифицируем в курсе алгебры 9-го класса.

    Пример 1. Найти наименьшее и наибольшее значения функции у = 2х 2 на отрезке: а) ; б) [- 2, - 1]; в) [- 1, 1,5].

    а) Построим график функции у = 2х 2 и выделим его часть на отрезке (рис. 15). Замечаем, что 1/наим. = 0 (достигается при х = 0), а у наиб = 8 (достигается при х = 2).

    б) Построим график функции у = 2х 2 и выделим его часть на отрезке [- 2, - 1] (рис. 16). Замечаем, что 2/наим = 2 (достигается при х = - 1), а y наиб = 8 (достигается при х = - 2).

    в) Построим график функции у = 2х 2 и выделим его часть на отрезке [- 1, 1,5] (рис. 17). Замечаем, что унанм = 0 (достигается при х = 0), а y наиб достигается в точке х = 1,5; подсчитаем это значение:(1,5) = 2-1,5 2 = 2- 2,25 = 4,5. Итак, y наиб =4,5.

    Пример 2. Решить уравнение - х 2 = 2х - 3.

    Решение. В учебнике «Алгебра-7» мы выработали алгоритм графического решения уравнений, напомним его.

    Чтобы графически решить уравнение f(x) = g (x), нужно:

    1) рассмотреть две функции у = -x 2 и у = 2x -3;
    2) построить график функции i/ = / (х) ;
    3) построить график функции у = g (x);
    4) найти точки пересечения построенных графиков; абсцис-
    сы этих точек - корни уравнения f(x) = g (x).

    Применим этот алгоритм к заданному уравнению.
    1) Рассмотрим две функции: у = - х2 и у = 2х - 3.
    2) Построим параболу - график функции у = - х 2 (рис. 18).

    3) Построим график функции у = 2х - 3. Это - прямая, для ее построения достаточно найти любые две точки графика. Если х = 0, то у = - 3; если х = 1,то у = -1. Итак, нашли две точки (0; -3) и (1; -1). Прямая, проходящая через эти две точки (график функции у = 2х - 3), изображена на том же чертеже (см. рис. 18).

    4) По чертежу находим, что прямая и парабола пересекаются в двух точках А(1; -1) и Б(-3; -9). Значит, данное уравнение имеет два корня: 1 и - 3 - это абсциссы точек А и В.

    Ответ: 1,-3.

    Замечание. Разумеется, нельзя слепо доверять графическим иллюстрациям. Может быть, нам только кажется, что точка А имеет координаты (1; - 1), а на самом деле они другие, например (0,98; - 1,01)?

    Поэтому всегда полезно проверить себя. Так, в рассмотренном примере надо убедиться, что точка А(1; -1) принадлежит параболе у = - х 2 (это легко - достаточно подставить в формулу у = - х 2 координаты точки А; получим - 1 = - 1 2 - верное числовое равенство) и прямой у = 2х - 3 (и это легко - достаточно подставить в формулу у = 2х - 3 координаты точки А; получим - 1 =2-3 - верное числовое равенство). То же самое надо сделать и для точки 8. Эта проверка показывает, что в рассмотренном уравнении графические наблюдения привели к верному результату.

    Пример 3. Решить систему

    Решение. Преобразуем первое уравнение системы к виду у = - х 2 . Графиком этой функции является парабола, изображенная на рис. 18.

    Преобразуем второе уравнение системы к виду у = 2х - 3. Графиком этой функции является прямая, изображенная на рис. 18.

    Парабола и прямая пересекаются в точках А(1; -1) и В (- 3; - 9). Координаты этих точек и служат решениями заданной системы уравнений.

    Ответ: (1; -1), (-3; -9).

    Пример 4. Дана функция у - f (x), где

    Требуется:

    а) вычислить f(-4), f(-2), f(0), f(1,5), f(2), f(3);

    б) построить график функции;

    в) с помощью графика перечислить свойства функции.

    а) Значение х = - 4 удовлетворяет условию -, следовательно, f(-4) надо вычислять по первой строке задания функции.Имеем f(x) = - 0,5x2, значит, f(-4) = -0,5. (-4) 2 = -8.

    Аналогично находим:

    f(-2) = -0,5. (-2) 2 =-2;
    f(0) = -0,5. 0 2 = 0.

    Значение удовлетворяет условию , поэтому надо вычислять по второй строке задания функции. Имеем f(х) = х + 1, значит, Значение х = 1,5 удовлетворяет условию 1 < х < 2, т. е. f(1,5) надо вычислять по третьей строке задания функции. Имеем f (х) = 2х 2 , значит, f(1,5) = 2-1,5 2 = 4,5.
    Аналогично получим f(2)= 2. 2 2 =8.

    Значение х = 3 не удовлетворяет ни одному из трех условий задания функции, а потому f(3) в данном случае вычислить нельзя, точка х = 3 не принадлежит области определения функции. Задание, состоящее в том, чтобы вычислить f(3), - некорректно.

    б) Построение графика осуществим «по кусочкам». Сначала построим параболу у = -0,5x 2 и выделим ее часть на отрезке [-4, 0] (рис. 19). Затем построим прямую у = х + 1 и. выделим ее часть на полуинтервале (0, 1] (рис. 20). Далее построим параболу у = 2х 2 и выделим ее часть на полуинтервале(1, 2] (рис. 21).

    Наконец, все три «кусочка» изобразим в одной системе координат; получим график функции у = f(x) (рис. 22).

    в) Перечислим свойства функции или, как мы условились говорить, прочитаем график.

    1. Область определения функции - отрезок [-4, 2].

    2. у = 0 при х = 0; у > 0 при 0<х<2;у<0 при - 4 < х < 0.

    3. Функция претерпевает разрыв при х = 0.

    4. Функция возрастает на отрезке [-4, 2].

    5. Функция ограничена и снизу и сверху.

    6. y наим = -8 (достигается при х = -4); y наи6 . = 8 (достигается при х = 2).

    Пример 5. Дана функция у = f(x) , где f(x) = Зх 2 . Найти.

    Линейная функция y = kx + m , когда m = 0 принимает вид y = kx . В таком случае можно заметить, что:

    1. Если x = 0, то и y = 0. Следовательно, график линейной функции y = kx проходит через начало координат не зависимо от значения k .
    2. Если x = 1, то y = k .

    Рассмотрим различные значения k , и как от этого меняется y .

    Если k положительно (k > 0), то прямая (график функции), проходя через начало координат, будет лежать в I и III координатных четвертях. Ведь при положительном k , когда x положителен, то y также будет положителен. А когда x отрицателен, y также будет отрицательным. Например, для функции y = 2x , если x = 0.5, то y = 1; если же x = –0.5, то y = –1.

    Теперь при условии положительного k рассмотрим три разных линейных уравнения. Пусть это будут: y = 0.5x и y = 2x и y = 3x . Как меняется значение y при одном и том же x ? Очевидно оно возрастает вместе с k : чем больше k , тем больше y . А это значит, прямая (график функции) при большем значении k будет иметь больший угол между осью x (осью абсцисс) и графиком функции. Таким образом от k зависит, под каким углом пересекает прямая ось x , и отсюда о k говорят как об угловом коэффициенте линейной функции .

    Теперь изучим ситуацию, когда k x положителен, то y будет отрицателен; и наоборот: если x y > 0. Таким образом график функции y = kx при при k

    Допустим, имеются линейные уравнения y = –0.5x, y = –2x, y = –3x . При x = 1 получим y = –0.5, y = –2, y = –3. При x = 2 получим y = –1, y = –2, y = –6. Таким образом, чем больше k, тем больше y, если x положительно.

    Однако если x = –1, то y = 0.5, y = 2, y = 3. При x = –2 получим y = 1, y = 4, y = 6. Тут с уменьшением значения k возрастает y при x

    График функции при k

    Графики функций типа y = kx + m отличаются от графиков y = km лишь параллельным смещением.

    Линейной функцией называется функция вида y=kx+b, где x-независимая переменная, k и b-любые числа.
    Графиком линейной функции является прямая.

    1. Чтобы постороить график функции, нам нужны координаты двух точек, принадлежащих графику функции. Чтобы их найти, нужно взять два значения х, подставить их в уравнение функции, и по ним вычислить соответствующие значения y.

    Например, чтобы построить график функции y= ⅓ x+2, удобно взять x=0 и x=3, тогда ординаты эти точек будут равны y=2 и y=3. Получим точки А(0;2) и В(3;3). Соединим их и получим график функции y= ⅓ x+2:

    2. В формуле y=kx+b число k называется коэффицентом пропорциональности:
    если k>0, то функция y=kx+b возрастает
    если k
    Коэффициент b показывает смещение графика функции вдоль оси OY:
    если b>0, то график функции y=kx+b получается из графика функцииy=kx сдвигом на b единиц вверх вдоль оси OY
    если b
    На рисунке ниже изображены графики функций y=2x+3; y= ½ x+3; y=x+3

    Заметим, что во всех этих функциях коэффициент k больше нуля, и функции являются возрастающими. Причем, чем больше значение k, тем больше угол наклона прямой к положительному направлению оси OX.

    Во всех функциях b=3 – и мы видим, что все графики пересекают ось OY в точке (0;3)

    Теперь рассмотрим графики функций y=-2x+3; y=- ½ x+3; y=-x+3

    На этот раз во всех функциях коэффициент k меньше нуля, и функции убывают. Коэффициент b=3, и графики также как в предыдущем случае пересекают ось OY в точке (0;3)

    Рассмотрим графики функций y=2x+3; y=2x; y=2x-3

    Теперь во всех уравнениях функций коэффициенты k равны 2. И мы получили три параллельные прямые.

    Но коэффициенты b различны, и эти графики пересекают ось OY в различных точках:
    График функции y=2x+3 (b=3) пересекает ось OY в точке (0;3)
    График функции y=2x (b=0) пересекает ось OY в точке (0;0) - начале координат.
    График функции y=2x-3 (b=-3) пересекает ось OY в точке (0;-3)

    Итак, если мы знаем знаки коэффициентов k и b, то можем сразу представить, как выглядит график функции y=kx+b.
    Если k 0

    Если k>0 и b>0 , то график функции y=kx+b имеет вид:

    Если k>0 и b , то график функции y=kx+b имеет вид:

    Если k, то график функции y=kx+b имеет вид:

    Если k=0 , то функция y=kx+b превращается в функцию y=b и ее график имеет вид:

    Ординаты всех точек графика функции y=b равны b Если b=0 , то график функции y=kx (прямая пропорциональность) проходит через начало координат:

    3. Отдельно отметим график уравнения x=a. График этого уравнения представляет собой прямую линию, параллельую оси OY все точки которой имеют абсциссу x=a.

    Например, график уравнения x=3 выглядит так:
    Внимание! Уравнение x=a не является функцией, так одному значению аргумента соотвутствуют разные значения функции, что не соответствует определению функции.


    4. Условие параллельности двух прямых:

    График функции y=k 1 x+b 1 параллелен графику функции y=k 2 x+b 2 , если k 1 =k 2

    5. Условие перепендикулярности двух прямых:

    График функции y=k 1 x+b 1 перепендикулярен графику функции y=k 2 x+b 2 , если k 1 *k 2 =-1 или k 1 =-1/k 2

    6. Точки пересечения графика функции y=kx+b с осями координат.

    С осью ОY. Абсцисса любой точки, принадлежащей оси ОY равна нулю. Поэтому, чтобы найти точку пересечения с осью ОY нужно в уравнение функции вместо х подставить ноль. Получим y=b. То есть точка пересечения с осью OY имеет координаты (0;b).

    С осью ОХ: Ордината любой точки, принадлежащей оси ОХ равна нулю. Поэтому, чтобы найти точку пересечения с осью ОХ нужно в уравнение функции вместо y подставить ноль. Получим 0=kx+b. Отсюда x=-b/k. То есть точка пересечения с осью OX имеет координаты (-b/k;0):