Смысл производной функции. Производная функции

Сергей Никифоров

Если производная функции знакопостоянна на интервале, а сама функция непрерывна на его границах, то граничные точки при­со­еди­ня­ют­ся как к про­ме­жут­кам воз­рас­та­ния, так и к про­ме­жут­кам убы­ва­ния, что полностью соответствует определению возрастающих и убывающих функций.

Фарит Ямаев 26.10.2016 18:50

Здравствуйте. Как же (на каком основании) можно утверждать, что в точке, где производная равна нулю, функция возрастает. Приведите доводы. Иначе, это просто чей-то каприз. По какой теореме? А также доказательство. Спасибо.

Служба поддержки

Значение производной в точке не имеет прямого отношения к возрастанию функции на промежутке. Рассмотрите, например, функции - все они возрастают на отрезке

Владлен Писарев 02.11.2016 22:21

Если функция возрастает на интервале (а;b) и определена и непрерывна в точках а и b, то она возрастает на отрезке . Т.е. точка x=2 входит в данный промежуток.

Хотя, как правило возрастание и убывание рассматривается не на отрезке, а на интервале.

Но в самой точке x=2, функция имеет локальный минимум. И как объяснять детям, что когда они ищут точки возрастания (убывания), то точки локального экстремума не считаем, а в промежутки возрастания (убывания) - входят.

Учитывая, что первая часть ЕГЭ для "средней группы детского сада", то наверное такие нюансы- перебор.

Отдельно, большое спасибо за "Решу ЕГЭ" всем сотрудникам- отличное пособие.

Сергей Никифоров

Простое объяснение можно получить, если отталкиваться от определения возрастающей/убывающей функции. Напомню, что звучит оно так: функция называется возрастающей/убывающей на промежутке, если большему аргументу функции соответствует большее/меньшее значение функции. Такое определение никак не использует понятие производной, поэтому вопросов о точках, где производная обращается в ноль возникнуть не может.

Ирина Ишмакова 20.11.2017 11:46

Добрый день. Здесь в комментариях я вижу убеждения, что границы включать нужно. Допустим, я с этим соглашусь. Но посмотрите, пожалуйста, ваше решение к задаче 7089. Там при указании промежутков возрастания границы не включаются. И это влияет на ответ. Т.е. решения заданий 6429 и 7089 противоречат друг другу. Проясните, пожалуйста, эту ситуацию.

Александр Иванов

В заданиях 6429 и 7089 совершенно разные вопросы.

В одном про промежутки возрастания, а в другом про промежутки с положительной производной.

Противоречия нет.

Экстремумы входят в промежутки возрастания и убывания, но точки, в которых производная равна нулю, не входят в промежутки, на которых производная положительна.

A Z 28.01.2019 19:09

Коллеги, есть понятие возрастания в точке

(см. Фихтенгольц например)

и ваше понимание возрастания в точке x=2 противочет классическому определению.

Возрастание и убывание это процесс и хотелось бы придерживаться этого принципа.

В любом интервале, который содержит точку x=2, функция не является возрастающей. Поэтому включение данный точки x=2 процесс особый.

Обычно, чтобы избежать путаницы о включении концов интервалов говорят отдельно.

Александр Иванов

Функция y=f(x) называется возрастающей на некотором промежутке, если бо́льшему значению аргумента из этого промежутка соответствует бо́льшее значение функции.

В точке х=2 функция дифференцируема, а на интервале (2; 6) производная положительна, значит, на промежутке её значения строго положительны, значит функция на этом участке только возрастает, поэтому значение функции в левом конце x = −3 меньше, чем её значение в правом конце x = −2.

Ответ: φ 2 (−3) φ 2 (−2)

2) Пользуясь графиком первообразной Φ 2 (x ) (в нашем случае это синий график), определите какое из 2-ух значений функции больше φ 2 (−1) или φ 2 (4)?

По графику первообразной видно, что точка x = −1 находится на участке возрастания, следовательно значение соответсвующей производной положительно. Точка x = 4 находится на участке убывания и значение соответствующей производной отрицательно. Поскольку положительное значение больше отрицательного, делаем вывод - значение неизвестной функции, которая как раз и является производной, в точке 4 меньше, чем в точке −1.

Ответ: φ 2 (−1) > φ 2 (4)

Подобных вопросов по отсутствующему графику можно задать много, что обуславливает большое разноообразие задач с кратким ответом, построенных по такой же схеме. Попробуйте решить некоторые из них.

Задачи на определение характеристик производной по графику функции.


Рисунок 1.


Рисунок 2.

Задача 1

y = f (x ), определенной на интервале (−10,5;19). Определите количество целых точек, в которых производная функции положительна.

Производная функции положительна на тех участках, где функция возрастает. По рисунку видно, что это промежутки (−10,5;−7,6), (−1;8,2) и (15,7;19). Перечислим целые точки внутри этих интервалов: "−10","−9", "−8","0", "1","2", "3","4", "5","6", "7","8", "16","17", "18". Всего 15 точек.

Ответ: 15

Замечания.
1. Когда в задачах о графиках функций требуют назвать "точки", как правило, имеют в виду только значения аргумента x , которые являются абсциссами соответствующих точек, расположенных на графике. Ординаты этих точек - значения функции, они являются зависимыми и могут быть легко вычислены при необходимости.
2. При перечислении точек мы не учитывали края интервалов, так как функция в этих точках не возрастает и не убывает, а "разворачивается". Производная в таких точках не положительна и не отрицательна, она равна нулю, поэтому они называются стационарными точками. Кроме того, мы не рассматриваем здесь границы области определения, потому что в условии сказано, что это интервал.

Задача 2

На рисунке 1 изображен график функции y = f (x ), определенной на интервале (−10,5;19). Определите количество целых точек, в которых производная функции f " (x ) отрицательна.

Производная функции отрицательна на тех участках, где функция убывает. По рисунку видно, что это промежутки (−7,6;−1) и (8,2;15,7). Целые точки внутри этих интервалов: "−7","−6", "−5","−4", "−3","−2", "9","10", "11","12", "13","14", "15". Всего 13 точек.

Ответ: 13

См. замечания к предыдущей задаче.

Для решения следующих задач нужно вспомнить еще одно определение.

Точки максимума и минимума функции объединяются общим названием - точки экстремума .

В этих точках производная функции либо равна нулю, либо не существует (необходимое условие экстремума ).
Однако необходимое условие - это признак, но не гарантия существования экстремума функции. Достаточным условием экстремума является смена знака производной: если производная в точке меняет знак с "+" на "−", то это точка максимума функции; если производная в точке меняет знак с "−" на "+" , то это точка минимума функции; если в точке производная функции равна нулю, либо не существует, но знак производной при переходе через эту точку не меняется на противоположный, то указанная точка не является точкой экстремума функции. Это может быть точка перегиба, точка разрыва или точка излома графика функции.

Задача 3

На рисунке 1 изображен график функции y = f (x ), определенной на интервале (−10,5;19). Найдите количество точек, в которых касательная к графику функции параллельна прямой y = 6 или совпадает с ней.

Вспомним, что уравнение прямой имеет вид y = kx + b , где k - коэффициент наклона этой прямой к оси Ox . В нашем случае k = 0, т.е. прямая y = 6 не наклонена, а параллельна оси Ox . Значит искомые касательные также должны быть параллельны оси Ox и также должны иметь коэффициент наклона 0. Таким свойством касательные обладают в точках экстремумов функций. Поэтому для ответа на вопрос нужно просто посчитать все точки экстремумов на графике. Здесь их 4 - две точки максимума и две точки минимума.

Ответ: 4

Задача 4

Функции y = f (x ), определенной на интервале (−11;23). Найдите сумму точек экстремума функции на отрезке .

На указанном отрезке мы видим 2 точки экстремума. Максимум функции достигается в точке x 1 = 4, минимум в точке x 2 = 8.
x 1 + x 2 = 4 + 8 = 12.

Ответ: 12

Задача 5

На рисунке 1 изображен график функции y = f (x ), определенной на интервале (−10,5;19). Найдите количество точек, в которых производная функции f " (x ) равна 0.

Производная функции равна нулю в точках экстремума, которых на графике видно 4:
2 точки максимума и 2 точки минимума.

Ответ: 4

Задачи на определение характеристик функции по графику её производной.


Рисунок 1.

Рисунок 2.

Задача 6

На рисунке 2 изображен график f " (x ) - производной функции f (x ), определенной на интервале (−11;23). В какой точке отрезка [−6;2] функция f (x ) принимает наибольшее значение.

На указанном отрезке производная нигде не была положительной, следовательно функция не возрастала. Она убывала или проходила через стационарные точки. Таким образом, наибольшего значения функция достигала на левой границе отрезка: x = −6.

Ответ: −6

Замечание: По графику производной видно, что на отрезке [−6;2] она равна нулю трижды: в точках x = −6, x = −2, x = 2. Но в точке x = −2 она не меняла знака, значит в этой точке не могло быть экстремума функции. Скорее всего там была точка перегиба графика исходной функции.

Задача 7

На рисунке 2 изображен график f " (x ) - производной функции f (x ), определенной на интервале (−11;23). В какой точке отрезка функция принимает наименьшее значение.

На отрезке производная строго положительна, следовательно функция на этом участке только возрастала. Таким образом, наименьшего значения функция достигала на левой границе отрезка: x = 3.

Ответ: 3

Задача 8

На рисунке 2 изображен график f " (x ) - производной функции f (x ), определенной на интервале (−11;23). Найдите количество точек максимума функции f (x ), принадлежащих отрезку [−5;10].

Согласно необходимому условию экстремума максимум функции может быть в точках, где её производная равна нулю. На заданном отрезке это точки: x = −2, x = 2, x = 6, x = 10. Но согласно достаточному условию он точно будет только в тех из них, где знак производной меняется с "+" на "−". На графике производной мы видим, что из перечисленных точек такой является только точка x = 6.

Ответ: 1

Задача 9

На рисунке 2 изображен график f " (x ) - производной функции f (x ), определенной на интервале (−11;23). Найдите количество точек экстремума функции f (x ), принадлежащих отрезку .

Экстремумы функции могут быть в тех точках, где её производная равна 0. На заданном отрезке графика производной мы видим 5 таких точек: x = 2, x = 6, x = 10, x = 14, x = 18. Но в точке x = 14 производная не поменяла знак, следовательно её надо исключить из рассмотрения. Таким образом, остаются 4 точки.

Ответ: 4

Задача 10

На рисунке 1 изображен график f " (x ) - производной функции f (x ), определенной на интервале (−10,5;19). Найдите промежутки возрастания функции f (x ). В ответе укажите длину наибольшего из них.

Промежутки возрастания функции совпадают с промежутками положительности производной. На графике мы видим их три - (−9;−7), (4;12), (18;19). Самый длинный из них второй. Его длина l = 12 − 4 = 8.

Ответ: 8

Задача 11

На рисунке 2 изображен график f " (x ) - производной функции f (x ), определенной на интервале (−11;23). Найдите количество точек, в которых касательная к графику функции f (x ) параллельна прямой y = −2x − 11 или совпадает с ней.

Угловой коэффициент (он же тангенс угла наклона) заданной прямой k = −2. Нас интересуют параллельные или совпадающие касательные, т.е. прямые с таким же наклоном. Исходя из геометрического смысла производной - угловой коэффициент касательной в рассматриваемой точке графика функции, пересчитываем точки, в которых производная равна −2. На рисунке 2 таких точек 9. Их удобно считать по пересечениям графика и линии координатной сетки, проходящей через значение −2 на оси Oy .

Ответ: 9

Как видите, по одному и тому же графику можно задать самые разнообразные вопросы о поведении функции и её производной. Также один тот же вопрос можно отнести к графикам разных функций. Будьте внимательны при решении этой задачи на экзамене, и она покажется Вам очень легкой. Другие виды задач этого задания - на геометрический смысл первообразной - будут рассмотрены в другом разделе.

Дорогие друзья! В группу заданий связанных с производной входят задачи — в условии дан график функции, несколько точек на этом графике и стоит вопрос:

В какой точке значение производной наибольшее (наименьшее)?

Кратко повторим:

Производная в точке равна угловому коэффициенту касательной проходящей через эту точку графика.

У гловой коэффициент касательной в свою очередь равен тангенсу угла наклона этой касательной.

*Имеется ввиду угол между касательной и осью абсцисс.

1. На интервалах возрастания функции производная имеет положительное значение.

2. На интервалах её убывания производная имеет отрицательное значение.


Рассмотрим следующий эскиз:


В точках 1,2,4 производная функции имеет отрицательное значение, так как данные точки принадлежат интервалам убывания.

В точках 3,5,6 производная функции имеет положительное значение, так как данные точки принадлежат интервалам возрастания.

Как видим, со значением производной всё ясно, то есть определить какой она имеет знак (положительный или отрицательный) в определённой точке графика совсем несложно.

При чём, если мы мысленно построим касательные в этих точках, то увидим, что прямые проходящие через точки 3, 5 и 6 образуют с осью оХ углы лежащие в пределах от 0 до 90 о, а прямые проходящие через точки 1, 2 и 4 образуют с осью оХ углы в пределах от 90 о до 180 о.

*Взаимосвязь понятна: касательные проходящие через точки принадлежащие интервалам возрастания функции образуют с осью оХ острые углы, касательные проходящие через точки принадлежащие интервалам убывания функции образуют с осью оХ тупые углы.

Теперь важный вопрос!

А как изменяется значение производной? Ведь касательная в разных точках графика непрерывной функции образует разные углы, в зависимости от того, через какую точку графика она проходит.

*Или, говоря простым языком, касательная расположена как бы «горизонтальнее» или «вертикальнее». Посмотрите:

Прямые образуют с осью оХ углы в пределах от 0 до 90 о


Прямые образуют с осью оХ углы в пределах от 90 о до 180 о


Поэтому, если будут стоять вопросы:

— в какой из данных точек графика значение производной имеет наименьше значение?

— в какой из данных точек графика значение производной имеет наибольшее значение?

то для ответа необходимо понимать, как изменяется значение тангенса угла касательной в пределах от 0 до 180 о.

*Как уже сказано, значение производной функции в точке равно тангенсу угла наклона касательной к оси оХ.

Значение тангенса изменяется следующим образом:

При изменении угла наклона прямой от 0 о до 90 о значение тангенса, а значит и производной, изменяется соответственно от 0 до +∞;

При изменении угла наклона прямой от 90 о до 180 о значение тангенса, а значит и производной, изменяется соответственно –∞ до 0.

Наглядно это видно по графику функции тангенса:

Говоря простым языком:

При угле наклона касательной от 0 о до 90 о

Чем он ближе к 0 о, тем больше значение производной будет близко к нулю (с положительной стороны).

Чем угол ближе к 90 о, тем больше значение производной будет увеличиваться к +∞.

При угле наклона касательной от 90 о до 180 о

Чем он ближе к 90 о, тем больше значение производной будет уменьшаться к –∞.

Чем угол будет ближе к 180 о, тем больше значение производной будет близко к нулю (с отрицательной стороны).

317543. На рисунке изображен график функции y = f (x ) и отмечены точки –2, –1, 1, 2. В какой из этих точек значение производной наибольшее? В ответе укажите эту точку.


Имеем четыре точки: две из них принадлежат интервалам на которых функция убывает (это точки –1 и 1) и две интервалам на которых функция возрастает (это точки –2 и 2).

Можем сразу же сделать вывод о том, что в точках –1 и 1 производная имеет отрицательное значение, в точках –2 и 2 она имеет положительное значение. Следовательно в данном случае необходимо проанализировать точки –2 и 2 и определить в какой из них значении будет наибольшим. Построим касательные проходящие через указанные точки:


Значение тангенса угла между прямой a и осью абсцисс будет больше значения тангенса угла между прямой b и этой осью. Это означает, что значение производной в точке –2 будет наибольшим.

Ответим на следующий вопрос: в какой из точек –2, –1, 1 или 2 значение производной является наибольшим отрицательным? В ответе укажите эту точку.

Производная будет иметь отрицательное значение в точках, принадлежащим интервалам убывания, поэтому рассмотрим точки –2 и 1. Построим касательные проходящие через них:


Видим, что тупой угол между прямой b и осью оХ находится «ближе» к 180 о , поэтому его тангенс будет больше тангенса угла, образованного прямой а и осью оХ.

Таким образом, в точке х = 1, значение производной будет наибольшим отрицательным.

317544. На рисунке изображен график функции y = f (x ) и отмечены точки –2, –1, 1, 4. В какой из этих точек значение производной наименьшее? В ответе укажите эту точку.


Имеем четыре точки: две из них принадлежат интервалам, на которых функция убывает (это точки –1 и 4) и две интервалам, на которых функция возрастает (это точки –2 и 1).

Можем сразу же сделать вывод о том, что в точках –1 и 4 производная имеет отрицательное значение, в точках –2 и 1 она имеет положительное значение. Следовательно, в данном случае, необходимо проанализировать точки –1 и 4 и определить – в какой из них значении будет наименьшим. Построим касательные проходящие через указанные точки:


Значение тангенса угла между прямой a и осью абсцисс будет больше значения тангенса угла между прямой b и этой осью. Это означает, что значение производной в точке х = 4 будет наименьшим.

Ответ: 4

Надеюсь, что «не перегрузил» вас количеством написанного. На самом деле, всё очень просто, стоит только понять свойства производной, её геометрический смысл и как изменяется значение тангенса угла от 0 до 180 о.

1. Сначала определите знаки производной в данных точках (+ или -) и выберете необходимые точки (в зависимости от поставленного вопроса).

2. Постройте касательные в этих точках.

3. Пользуясь графиком тангесоиды, схематично отметьте углы и отобразите А лександр.

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

Показывающая связь знака производной с характером монотонности функции.

Пожалуйста, будьте предельно внимательны в следующем. Смотрите, график ЧЕГО вам дан! Функции или ее производной

Если дан график производной , то интересовать нас будут только знаки функции и нули. Никакие «холмики» и «впадины» не интересуют нас в принципе!

Задача 1.

На рисунке изображен график функции , определенной на интервале . Определите количество целых точек, в которых производная функции отрицательна.


Решение:

На рисунке выделены цветом области убывания функции :


В эти области убывания функции попадает 4 целые значения .


Задача 2.

На рисунке изображен график функции , определенной на интервале . Найдите количество точек, в которых касательная к графику функции параллельна прямой или совпадает с ней.


Решение:

Раз касательная к графику функции параллельна (или совпадает) прямой (или, что тоже самое, ), имеющей угловой коэффициент , равный нулю, то и касательная имеет угловой коэффициент .

Это в свою очередь означает, что касательная параллельна оси , так как угловой коэффициент есть тангенс угла наклона касательной к оси .

Поэтому мы находим на графике точки экстремума (точки максимума и минимума), – именно в них касательные к графику функции будут параллельны оси .


Таких точек – 4.

Задача 3.

На рисунке изображен график производной функции , определенной на интервале . Найдите количество точек, в которых касательная к графику функции параллельна прямой или совпадает с ней.


Решение:

Раз касательная к графику функции параллельна (или совпадает) прямой , имеющей угловой коэффициент , то и касательная имеет угловой коэффициент .

Это в свою очередь означает, что в точках касания.

Поэтому смотрим, сколько точек на графике имеют ординату , равную .

Как видим, таких точек – четыре.

Задача 4.

На рисунке изображен график функции , определенной на интервале . Найдите количество точек, в которых производная функции равна 0.


Решение:

Производная равна нулю в точках экстремума. У нас их 4:


Задача 5.

На рисунке изображён график функции и одиннадцать точек на оси абсцисс:. В скольких из этих точек производная функции отрицательна?


Решение:

На промежутках убывания функции её производная принимает отрицательные значения. А убывает функция в точках. Таких точек 4.

Задача 6.

На рисунке изображен график функции , определенной на интервале . Найдите сумму точек экстремума функции .


Решение:

Точки экстремума – это точки максимума (-3, -1, 1) и точки минимума (-2, 0, 3).

Сумма точек экстремума: -3-1+1-2+0+3=-2.

Задача 7.

На рисунке изображен график производной функции , определенной на интервале . Найдите промежутки возрастания функции . В ответе укажите сумму целых точек, входящих в эти промежутки.


Решение:

На рисунке выделены промежутки, на которых производная функции неотрицательная.

На малом промежутке возрастания целых точек нет, на промежутке возрастания четыре целых значения : , , и .


Их сумма:

Задача 8.

На рисунке изображен график производной функции , определенной на интервале . Найдите промежутки возрастания функции . В ответе укажите длину наибольшего из них.


Решение:

На рисунке выделены цветом все промежутки, на которых производная положительна, а значит сама функция возрастает на этих промежутках.


Длина наибольшего из них – 6.

Задача 9.

На рисунке изображен график производной функции , определенной на интервале . В какой точке отрезка принимает наибольшее значение.


Решение:

Смотрим как ведет себя график на отрезке , а именно нас интересует только знак производной .


Знак производной на – минус, так как график на этом отрезке ниже оси .