Основные статистические параметры. Основные статистические характеристики ряда измерений

Отчет по лабораторным работам

по предмету «Методы и средства статистической обработки данных»

Выполнила: Галимова А.Р., гр. 4195

Проверил: Мокшин В.В.

Казань, 2013

1. Индивидуальное задание. 3

2. Планирование экспериментов. 4

2.1. Стратегическое планирование. 4

2.1.1. D - оптимальные планы.. 5

3. Основные статистические характеристики ИСД. 8

4. Оценка нормальности ИСД. 9

5. Временное прогнозирование. 13

6. Корреляционный анализ. 15

7. Кластерный анализ. 16

8. Факторный анализ. 22

9. Регрессионный анализ. 27

10. Дисперсионный анализ. 35

11. Оптимизация значений факторов и результативных показателей эффективности. 35

Выводы.. 36

Приложение. 37

Индивидуальное задание

BUF1 – на 3 места;

BUF2 − неограниченное количество мест;

GOT − экспоненциальный закон, среднее 20000 единиц времени;

VOSSТ −спец. эрл.закон, среднее в одной фазе 25 ед. вр., кол. фаз 3;

GT− равномерный закон, 225±25 единиц времени;

РК1 – экспоненциальный закон, среднее Х1=100 ед. времени;

РК2− нормальный закон, среднее Х2=90, ст. откл. 8 ед. вр.;

KAN1-KANМ– равномерный закон, 75±15 единиц времени;

Х3=М – количество каналов.

Выбор KANала для передачи по наименьшему количеству задач, по которым передана информация. Режим недоступности накладывается и снимается по KANалам независимо друг от друга.

Завершить моделирование после вывода из системы 300 задач (решённых плюс отказы).

Оптимизируемые факторы: Х1 – среднее время решения на ПК1, Х2 – среднее время решения на ПК2, Х3 – количество каналов. Х1 и Х2 менять на ±20% от указанных средних значений; Х3 от 2 до 6.

Построим модель в системе Arena

Рис.1 – Имитационная модель, построенная в системе моделирования Arena

Планирование экспериментов

Цель планирования – получить результаты с заданной достоверностью при наименьших затратах. Различают стратегическое и тактическое планирование.

Стратегическое планирование

Для стратегического планирования будем использовать концепцию «черного ящика», суть которого – абстрагирование от физической сущности процессов, происходящих в моделируемой системе и выдаче заключений о ее функционировании только на основании входных и выходных переменных. Входные, независимые переменные называются факторами. Выходные – откликами, их величина зависит от значений факторов и параметров ОИ.

Факторы в нашем случае – это показатели (параметры), которые мы будем оптимизировать; отклики – это результативные показатели эффективности функционирования моделируемой системы. Структурная схема чёрного ящика представлена на Рисунке 1.

Рис.1 Структурная схема концепции чёрного ящика

Планы второго порядка позволяют сформировать функцию отклика в виде полного квадратичного полинома, который содержит большее число членов, чем неполный квадратичный полином, сформированный по планам первого порядка, и поэтому требует большего числа выполняемых опытов. Полный квадратичный полином при m=3 имеет вид:

D - оптимальные планы

В D -оптимальных планах значения факторов не выходят за установленные границы диапазонов их изменения. Кроме того, они обладают еще одним существенным достоинством, обеспечивая минимальную ошибку во всем принятом диапазоне изменения факторов. На практике наиболее часто применяются планы Коно и планы Кифера.

Рис. 2 Геометрическая интерпретация трехфакторного плана Кифера на кубе

Стратегический план определяет количество вариантов системы, которые требуется промоделировать, и значения факторов в каждом варианте. Для 3-х оптимизируемых факторов предлагается D-оптимальный план по алгоритму Кифера, который состоит из 26 вариантов и представлен в Таблице 1.

Таблица 1 – План Кифера для 3-х факторного эксперимента

x 1 x 2 x 3 x 1 x 2 x 1 x 3 x 2 x 3 x 1 x 2 x 3 x 4 x 5 x 6
-1 -1 -1 -1 -1
-1 -1 -1
-1 -1 -1 -1
-1 -1
-1
-1 -1
-1 -1 -1 -1
-1 -1
-1 -1 -1 -1
-1 -1
-1
-1 -1
-1
-1 -1
-1 -1 -1 -1
-1 -1
-1 -1 -1 -1
-1 -1
-1 -1 -1 -1

Здесь: ; ;

Вычисляем значения X 1 , X 2 , X 3 по индивидуальному заданию. По условию индивидуального задания оптимизируемые факторы: Х1 – среднее время решения на ПК1, Х2 – среднее время решения на ПК2, Х3 – количество каналов. Х1 и Х2 менять на ±20% от указанных средних значений; Х3 от 2 до 6.

На PK1 условие экспоненциального закона, среднее 100 ед.времени, следовательно значение 0 - 100, 1-120, -1 -80 (так как меняем на ±20% от указанного среднего значения.

РК2 подчиняется по условию задания нормальному закону и среднее значение 90 ед. времени и модификатором ±20 ед.времени, следовательно 0-90, 1 – 108, -1-72. Все данные заносим Таблицу 2.

Таблица 1 - Данные для факторов X 1 , X 2 , X 3

-1
х1
х2
х3

Y 1 –Коэффициент использования ПК1 (0÷1)*100%;

Y 2 - Коэффициент использования ПК2 (0÷1)*100%;

Y 3 –Среднее общее время выполнения задач.

D-оптимальный план по алгоритму Кифера для индивидуального задания и Отклики Y 1 ,Y 2 ,Y 3 по факторам индивидуального задания, представлены в Таблице 3.

Таблица 2 - D-оптимальный план по алгоритму Кифера (для индивид.зад.)

x 1 x 2 x 3 x 1 x 2 x 1 x 3 x 2 x 3 x 1 x 2 x 3 x 4 x 5 x 6

Таблица 4 - Отклики Y 1 , Y 2 ,Y 3

Y 1 Y 2 Y 3
32,24 30,41 309,16
36,41 28,81 322,98
43,54 26,95 322,92
32,23 38,00 326,79
36,42 36,00 339,98
43,54 33,75 338,75
32,22 45,6 344,71
36,44 43,18 357,16
43,54 40,56 354,91
32,24 30,41 309,16
36,41 28,82 310,97
43,54 26,95 322,91
32,23 38,00 326,79
36,42 36,01 327,97
32,22 45,59 344,70
36,44 43,19 345,15
43,54 40,56 354,91
32,24 30,41 309,16
36,41 28,77 314,34
43,54 26,95 322,91
32,23 38,00 326,79
36,42 35,96 331,34
43,54 33,75 338,75
32,22 45,59 344,70
36,44 43,14 348,51
43,54 40,56 354,91

Основные статистические характеристики ИСД.

Основными статистическими характеристиками являются:

1. Valid N - объем выборки;

2. Mean- среднее арифметическое. Среднее значение случайной величины представляет собой наиболее типичное, наиболее вероятное ее значение, своеобразный центр, вокруг которого разбросаны все значения признака.

3. Median– медиана. Медианой является такое значение случайной величины,которое разделяет все случаи выборки на две равные почисленности части.

4. StandardDeviation- стандартное отклонение. Стандартное отклонение (или среднее квадратическое отклонение) является мерой изменчивости (вариации) признака. Оно показывает на какую величину в среднем отклоняются случаи от среднего значения признака.

5. Variance– дисперсия. Дисперсия является мерой изменчивости, вариации признака и представляет собой средний квадрат отклонений случаев от среднего значения признака. В отличии от других показателей вариации дисперсия может быть разложена на составные части, что позволяет тем самым оценить влияние различных факторов на вариацию признака.

6. Standard error of mean –стандартнаяошибкасреднего. Стандартная ошибка среднего - это величина, на которую отличается среднее значение выборки от среднего значения генеральной совокупности при условии, что распределение близко к нормальному.

7. 95% confidencelimitsofmean- 95%-ый доверительный интервал для среднего. Интервал, в который с вероятностью 0,95 попадает среднее значение признака генеральной совокупности.

8. Minimum, maximum- минимальное и максимальное значения.

9. Skewness–асимметрия. Асимметрия характеризует степень смещения вариационного ряда относительно среднего значения по величине и направлению.

10. Standard error of Skewness–стандартнаяошибкаасимметрии.

11. Kurtosis– эксцесс. Эксцесс характеризует степень концентрации случаев вокруг среднего значения и является своеобразной мерой крутости кривой.

12. Standard error of Kurtosis –стандартнаяошибкаэксцесса.

Таблица 5 - Результаты описательной статистики


Оценка нормальности ИСД.

Нормальный закон является наиболее употребительным. Он применяется для представления самых различных случайных процессов, таких, как продолжительность жизни людей, изменения экономических и технических показателей.

Выскажем гипотезу, что исходные статистические данные подчинены нормальному закону, и в качестве параметров нормального закона примем оценки математического ожидания и среднего квадратического отклонения, вычисленные по формулам.

Функция плотности нормального закона имеет вид:

; .

Если коэффициент доверия P к предположению о нормальности эмпирического распределения, который можно найти по статистическим таблицам, не меньше 0,20, то предположение о нормальности не отвергается. Если Р к <0,20, то предположение о нормальности рекомендуется отвергнуть.

Соответствие эмпирического и гипотетического распределений можно визуально проследить по графикам. При использовании критерия согласия Колмогорова предпочтительнее использовать функции распределения. Такие графики строятся и выдаются в специальных программных процедурах ППП Statistica 6.0 и Excel 2007 , на которые производится ориентация вычислений по излагаемому математическому аппарату. Представим распределение переменных на гистограммах (рис.3.-рис.8.).

На гистограммах наложена плотность нормального распределения, для проверки близости распределения к нормальному виду при помощи критерия Колмогорова-Смирнова.


Похожая информация.


ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ ГОРОДА МОСКВЫ

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

КОЛЛЕДЖ СВЯЗИ № 54 имени П.М. ВОСТРУХИНА

Статистические характеристики.

Учебное пособие к занятию часть 1.

Разработчик:

Преподаватель математики

Т.Н. Рудзина


– это математические понятия , с помощью которых описываются отличительные особенности и свойства совокупности данных , полученных с помощью наблюдений или каким-то другим способом. Значение характеристик состоит еще и в том, что они «подсказывают» , с каких позиций целесообразно анализировать имеющуюся совокупность данных .

К статистическим характеристикам относятся:

среднее арифметическое , размах , мода , медиана .

Рассмотрим пример:

При изучении учебной нагрузки учащихся выделили группу из 12 семиклассников. Их попросили отметить в определенный день время (в минутах), затраченное им на выполнения домашнего задания по алгебре. Получили такие данные:

23, 18, 25 20, 25, 25, 32, 37, 34, 26 34, 25 .

Имея этот ряд данных, можно определит ь, сколько минут в среднем затратили учащиеся на выполнение домашнего задания по алгебре.

Для этого указанные числа надо сложить и сумму разделить на 12:


Число 27 , полученное в результате, называют средним арифметическим рассматриваемого ряда чисел.

Определение :

Средним арифметическим ряда чисел называется частное от деления суммы этих чисел на число слагаемых.

Обычно среднее арифметическое находят тогда, когда хотят определить среднее значение для некоторого ряда данных: среднюю урожайность пшеницы с 1 га в районе, средний суточный удой молока от одной коровы на ферме, среднюю зарплату одного рабочего бригады за смену и т.д. Заметим, что среднее арифметическое находят только для однородных величин. Не имеет смысла, например, использовать в качестве обобщающего показателя среднюю урожайность зерновых и бахчевых культур. Причем и для однородных величин вычисление среднего арифметического бывает иногда лишено смысла, например нахождение средней температуры больных в госпитале, среднего размера обуви…


В рассмотренном примере мы нашли, что в среднем учащиеся затратили на выполнение домашнего задания по алгебре по 27 мин. Однако анализ приведенного ряда данных показывает, что время, затраченное некоторыми учащимися, существенно отличается от 27 мин., т.е. от среднего арифметического. Наибольший расход равен 37 мин., а наименьший – 18 мин. Разность между наибольшим и наименьшим расходом времени составляет 19 мин. В этом случае говорят, что размах ряда равен 19.

Определение :

Размахом ряда чисел называется разность между наибольшим и наименьшим из этих чисел.

Размах находят тогда, когда хотят определить, как велик разброс данных в ряду.


При анализе сведений о времени, затраченном семиклассниками на выполнение домашнего задания по алгебре, нас могут интересовать не только среднее арифметическое и размах полученного ряда данных, но и другие показатели. Интересно, например, знать, какой расход времени является типичным для выделенной группы учащихся, т.е. какое число встречается в ряду данных чаще всего. Нетрудно заметить, что таким числом является число 25. Говорят, что число 25 – мода рассматриваемого ряда.

Определение :

Модой ряда чисел называется число, наиболее часто встречающееся в данном ряду .

Ряд чисел может иметь более одной моды или не иметь моду совсем.

Например, в ряду чисел 47, 46, 50, 52, 47, 52, 49, 45, 43, 53 две моды – это числа 47 и 52 , так как каждое из этих чисел встречается два раза, а остальные числа встречаются в ряду менее двух раз, а в ряду чисел 69, 68, 66, 70, 67, 71, 74, 63, 73, 72 – моды нет.


Рассмотрим еще одну статистическую характеристику.

Начнем с примера. В таблице показан расход электроэнергии в январе жильцами девяти квартир

Составим из данных, приведенных в таблице, упорядоченный ряд:

64, 72, 72, 75, 78 , 82, 85, 91, 93.

В полученном упорядоченном ряду девять чисел. Не трудно заметить, что в середине ряда расположено число 78: слева от него записано четыре числа и справа тоже четыре числа. Говорят, что число 78 является срединным числом, или, иначе, медианой , рассматриваемого упорядоченного ряда чисел (от латинского слова mediana , которое означает «среднее»). Это число считают также медианой исходного ряда данных.


Приведем теперь другой пример. Пусть при сборе данных о расходе электроэнергии к указанным девяти квартирам добавили еще десятую. Получили такую таблицу:

Так же как в первом случае, представим полученные данные в виде упорядоченного ряда чисел:

64, 72, 72, 75, 78 , 82 , 85, 88, 91, 93

В этом числовом ряду четное число членов и имеются два числа, расположенные в середине ряда: 78 и 82 .

Число 80 , не являясь членом ряда, разбивает этот ряд на две одинаковые по численности группы: слева от него находятся пять членов ряда и справа тоже пять членов ряда:


64, 72, 72, 75, 78, 82, 85, 88, 91, 93

Говорят, что в этом случае медианой рассматриваемого упорядоченного ряда, а также исходного ряда данных, записанного в таблице, является число 80 .

Определение :

Медианой упорядоченного ряда чисел с нечетным числом членов называется число, записанное посередине, а медианой упорядоченного ряда чисел с нечетным числом членов называется среднее арифметическое двух чисел, записанных посередине.

Медианой произвольного ряда чисел называется медиана соответствующего упорядоченного ряда.


Если в упорядоченном числовом ряду содержится 2 n -1 членов, то медианой ряда является n -й член, так как n – 1 членов стоит до n -го члена и n – 1 членов – после n -го члена.

Если в упорядоченном ряду содержится 2 n членов, то медианой является среднее арифметическое членов, стоящих на n -м и n + 1 -м местах.

В каждом из рассмотренных выше примеров, определив медиану , мы можем указать номер квартиры, для которой расход электроэнергии жильцами превосходит срединное значение, т.е. медиану .

Рассмотрим еще один пример.

Известно, что 34 сотрудника отдела приобрели акции некоторого акционерного общества. Данные о числе акций, приобретенных сотрудниками, представлены в виде следующего упорядоченного ряда:

2, 2, 2, 2, 2, 3, 3, ……, 3, 4, 4, ……., 4, 100

Найдем медиану этого ряда. Так как всего в ряду 34 числа, то медиана равна среднему арифметическому 17– го и 18- го членов, т.е. равна (3 + 4) : 2 = 3,5

Вычисляя среднее арифметическое этого ряда, найдем, что оно приближенно равно 6,2, т.е. в среднем сотрудники отдела приобрели примерно по 6 акций. Мы видим, что в данном случае медиана лучше отражает реальную ситуацию, так как все сотрудники, кроме одного, приобрели не более 4 акций.

Такие показатели, как среднее арифметическое , мода и медиан а, по-разному характеризуют данные, полученные в результате наблюдений. Поэтому на практике при анализе данных в зависимости от конкретной ситуации используют либо все три показателя, либо некоторые из них.

Если, например, анализируются сведения о годовых доходах нескольких туристических фирм города, то удобно использовать все три показателя. Среднее арифметическое покажет средний годовой доход фирм, мода будет характеризовать типичный показатель годового дохода, медиана позволит определить туристические фирмы, годовой доход которых ниже среднего показателя.

Если изучают данные о размерах мужской обуви, проданной в определенный день в универмаге, то удобно воспользоваться таким показателем как мода , который характеризует размер, пользующийся наибольшим спросом. Находить в этом случае среднее арифметическое или медиану не имеет смысла .

При анализе результатов, показанных участниками заплыва на дистанцию 100 и, наиболее приемлемой характеристикой является медиана . Знание медианы позволит выделить для участия в соревнованиях группу спортсменов, показавших результаты выше среднего.

Статистические характеристики : среднее арифметическое , мод а, медиана называются средними результатами измерений .

Класс: 7

Презентация к уроку

















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели:

  • познакомить с основными статистическими характеристиками (средним арифметическим, размахом, модой ряда);
  • учить находить среднее арифметическое, размах, моду ряда;
  • способствовать развитию внимания, логического мышления, наблюдательности учащихся;
  • способствовать формированию экономически осознанного отношения к окружающему миру.

Материальное обеспечение:
мультимедийный проектор, карточки для проведения самостоятельной работы.
ХОД УРОКА
1. Домашнее задание: п.9, №№ 168, 172, 178 (учебник «Алгебра. 7класс» под редакцией С. А. Теляковского, Москва «Просвещение», 2009 год)

2. Сообщение темы урока.

2.1. Разгадывание кроссворда:

  1. Результат действия сложения (сумма) .
  2. Равенство, верное при любых значениях переменной (тождество) .
  3. Координата точки по оси Ох (абсцисса) .
  4. Утверждение, требующее доказательства (теорема) .
  5. Неизвестный элемент, который требуется найти (искомое) .
  6. Компонент действия сложения (слагаемое) .
  7. Простейшая геометрическая фигура (точка) .
  8. Компьютер – это инструмент для хранения, обработки и передачи … (информации) .
  9. Прямоугольный параллелепипед, у которого все измерения равны (куб) .
  10. Установленный порядок действий (алгоритм) .

2.2. – Прочитайте слово, образованное первыми буквами разгаданных слов. (Статистика)

– Как вы думаете, чем занимается статистика?
Статистика – это наука, которая занимается получением, обработкой и анализом количественных данных о разнообразных явлениях, происходящих в природе и обществе. (Слайд 2)
Экономическая статистика изучает изменение цен, спроса и предложения на товары, прогнозирует спрос и падение производства и потребления.
Медицинская статистика изучает эффективность различных лекарств и методов лечения, вероятность возникновения некоторого заболевания в зависимости от возраста, пола, наследственности, условий жизни, вредных привычек, прогнозирует распространение эпидемий.
Демографическая статистика изучает рождаемость, численность населения, его состав (возрастной, национальный, профессиональный).
А ещё есть статистика финансовая, налоговая, биологическая, метеорологическая и т.д.
Для обработки информации существуют определённые методы. (Слайд 3)
Раздел математики, посвящённый методам и правилам обработки и анализа статистических данных, называется математической статистикой. (Слайд 4)

2.3. Сообщение темы урока.

– Сегодня мы будем знакомиться с некоторыми статистическими характеристиками, будем учиться их определять. (Слайд 5).

3. Изучение нового материала.

3.1. – Рассмотрим данные о производстве пшеницы в России в период с 1995 года по 2001 год. (Слайд 6)

1995 г. – 30,1 млн. тонн;
1996 г. – 34,9 млн. тонн;
1997 г. – 44,3 млн. тонн;
1998 г. – 27 млн. тонн;
1999 г. – 31 млн. тонн;
2000 г. – 34,5 млн. тонн;
2001 г. – 47 млн. тонн.

– Как видим, производство пшеницы в разные годы различается. Как вы думаете, почему?
– Да, оно зависит от погодных условий, площади посева, качества семян и других обстоятельств. Поэтому производство пшеницы за 1 год не даёт полного представления об уровне производства пшеницы в стране. Для этой цели лучше использовать среднее значение за ряд лет. По данным таблицы мы можем вычислить среднее производство пшеницы за 7 лет. Как это можно сделать?
(30,1 + 34,9 + 44,3 + 27 + 31 + 34,5 + 47) : 7 = 35,5 (Слайд 7)
– Что мы нашли? (Среднее арифметическое)
– Среднее арифметическое является одной из статистической характеристик ряда чисел. Запишите определение этого понятия в тетрадь. (Слайд 8)
Средним арифметическим ряда чисел называется частное от деления суммы этих чисел на их количество.
– В каком году производство пшеницы было ближе всего к среднему значению? (в 1996 году)

3.2. Выполните задания (слайд 9) :

1) Вычислите среднее арифметическое чисел 6, 10, 16 и 20. (6 + 10 + 16 + 20) : 4 = 52: 4 = 13
2) Все числа равны между собой. Чему рано их среднее арифметическое? (Самому этому числу.)
3) Может ли среднее арифметическое не совпадать ни с одним из чисел данного ряда? (Да)
4) Придумайте три числа, среднее арифметическое которых совпадает со вторым по величине числом.

3.3. В одном из седьмых классов измерили рост мальчиков. Получили такие данные:
155 см, 167 см, 159 см, 168 см, 161 см, 170 см, 162 см, 153 см, 165 см. (Слайд 10) Найдите среднее арифметическое этого ряда чисел.
(155 + 167 + 159 + 168 + 161 + 170 + 162 + 153 + 165) : 9 = 1460: 9 = 162,(2) = 162
– Какой рост имеет самый высокий мальчик из этого класса? (170 см)
– Самый низкий мальчик? (153 см)
– Найдите разницу в росте ребят?
170 – 153 = 17 (см)
Разность между наибольшим и наименьшим значениями ряда данных называется размахом ряда и также является одной из статистических характеристик. (Слайд 11)
– Запишите определение в тетрадь.

3.4. Петя и Вася поспорили, кто лучше прыгает в длину с места. Чтобы избежать случайности, они решили, что будут прыгать по очереди 5 раз. (Слайд 12) Результаты своих прыжков они записали в таблицу (слайд 13) :

Номер прыжка

– Какую статистическую характеристику каждого ряда надо определить, чтобы выяснить, кто из ребят прыгает дальше? (Среднее арифметическое)
– Выясните это.

Петя: (190 + 205 + 195 + 210 + 210) : 5 = (190 + 400 + 420) : 5 = 1010: 5 = 202 (см)
Вася: (185 + 200 + 215 + 190 + 190) : 5 = (600 + 380) : 5 = 980: 5 = 196 (см)

Вывод: Петя прыгает дальше, чем Вася.
– Найдите по данной таблице разность между лучшим и худшим результатом каждого мальчика (размах ряда).
Петя: 210 – 190 = 20 (см); Вася: 215 – 185 = 30 (см)
– Можно ли утверждать, что Петя прыгает стабильнее? (Да)

3.5. В одном из седьмых классов решили выяснить, обувь какого размера носят девочки этого класса. (Слайд 14) Получили такие результаты:

35, 39, 37, 36, 38, 37, 38, 36, 37, 37, 38, 37, 37.

– Какой размер обуви встречается чаще всего? (37)
Число ряда, которое встречается в данном ряду наиболее часто, называется модой ряда . (Слайд 15)
– Запишите это определение в тетрадь.

3.6. (Слайд 16)

1) Любой ли ряд чисел имеет моду? (Нет)
2) Может ли ряд чисел иметь более одной моды? (Да)
3) Может ли мода ряда чисел не совпадать ни с одним из этих чисел? (Нет)

3.7. (Слайд 17)

Дан числовой ряд: 7, 8, 9, 7, 7, 6, 7, 6, 9, 7. Найдите среднее арифметическое, моду и размах этого ряда.
Среднее арифметическое: (7 + 8 + 9 + 7 + 7 + 6 + 7 + 6 + 9 + 7) : 10 = 73: 10 = 7,3.
Мода: 7.
Размах: 9 – 6 = 3.

4. Самостоятельная работа

Вариант 1.

  1. Найдите среднее арифметическое ряда чисел: 18, 11, 20, 19, 2, 10.
  2. Определите моду ряда чисел: 12, 13, 13, 15, 19, 13, 12, 14, 12, 14, 13.
  3. Вычислите размах ряда чисел: 31, 14, 25, 18, 29, 11, 16.
  4. Найдите среднее арифметическое, размах и моду ряда чисел: 21, 21, 21, 21, 21, 21, 21.
  5. В течение четверти Лена получила по алгебре такие оценки: три двойки, две тройки, четыре четвёрки и одну пятёрку. Какую статистическую характеристику Лена предпочла бы при выставлении четвертной оценки: среднее арифметическое, размах или моду ряда?

Вариант 2.

  1. Найдите среднее арифметическое ряда чисел: 21, 5, 18, 19, 15, 12.
  2. Определите моду ряда чисел: 18, 17, 17, 15, 11, 17, 18, 16, 18, 16, 17.
  3. Вычислите размах ряда чисел: 29, 16, 25, 12, 19, 11, 14.
  4. Найдите среднее арифметическое, размах и моду ряда чисел: 15, 15, 15, 15, 15, 15, 15.
  5. В течение четверти Лена получила по алгебре такие оценки: две двойки, три тройки, шесть четвёрок и две пятёрки. Какую статистическую характеристику Лена предпочла бы при выставлении четвертной оценки: среднее арифметическое, размах или моду ряда?

5. Подведение итогов урока. (Слайд 18)

1) С какими статистическими характеристиками мы познакомились на уроке?
2) Как найти среднее арифметическое ряда чисел?
3) Как находится размах ряда чисел?
4) Что показывает мода ряда чисел?

Использованная литература:

  1. Учебник «Алгебра. 7класс» под редакцией С. А. Теляковского, Москва «Просвещение», 2009 год;
  2. Ю. Н. Тюрин, А. А. Макаров, И. Р. Высоцкий, И. В. Ященко «Теория вероятностей и статистика», МЦНМО АО «Московские учебники», Москва, 2004 год;
  3. Г. Н. Иванова , www.openklass.ru ;
  4. «Математическая статистика»; kl10sch55.narod.ru;
  5. s21.my1.ru/metodi/tema uroka stat kharak 7 klass.doc

Цель работы: научиться обрабатывать статистические данные в электронных таблицах с помощью встроенных функций; изучить возможности Пакета анализа в MS Excel 2010 и его некоторые инструменты: Генерация случайных чисел, Гистограмма, Описательная статистика.

Теоретическая часть

Очень часто для обработки данных, полученных в результате обследования большого числа объектов или явлений (статистических данных ), используются методы математической статистики.

Современная математическая статистика подразделяется на две обширные области: описательную и аналитическую статистику . Описательная статистика охватывает методы описания статистических данных, представления их в форме таблиц, распределений и пр.

Аналитическая статистика называется также теорией статистических выводов. Ее предметом является обработка данных, полученных в ходе эксперимента, и формулировка выводов, имеющих прикладное значение для самых различных областей человеческой деятельности

Полученный в результате обследования набор чисел называетсястатистической совокупностью.

Выборочной совокупностью (или выборкой ) называется совокупность случайно отобранных объектов. Генеральной совокупностью называется совокупность объектов, из которой производится выборка. Объемом совокупности (генеральной или выборочной) называется число объектов этой совокупности.

Для статистической обработки результаты исследования объектов представляют в виде чисел x 1 , x 2 , …, x k . Если значение x 1 наблюдалось n 1 раз, значение x 2 наблюдалось n 2 раз, и т.д., то наблюдаемые значения x i называются вариантами , а числа их повторений n i называются частотами . Процедура подсчета частот называется группировкой данных.

Объем выборки n равен сумме всех частот n i :

Относительной частотой значения x i называется отношение частоты этого значения n i к объему выборки n :

. (2)

Статистическим распределением частот (или просто распределением частот ) называется перечень вариант и соответствующих им частот, записанных в виде таблицы:

Распределением относительных частот называется перечень вариант и соответствующих им относительных частот.

1. Основные статистические характеристики.

Современные электронные таблицы имеют огромный набор средств для анализа статистических данных. Наиболее часто используемые статистические функции встраиваются в основное ядро программы, то есть эти функции доступны с момента запуска программы. Другие более специализированные функции входят в дополнительные подпрограммы. В частности, в Excel, такая подпрограмма называется Пакетом анализа. Команды и функции пакета анализа называют Инструментами анализа. Мы ограничимся изучением нескольких основных встроенных статистических функций и наиболее полезных инструментов анализа из пакета анализа в электронной таблице Excel.

Среднее значение.

Функция СРЗНАЧ вычисляет выборочное (или генеральное) среднее, то есть среднее арифметическое значение признака выборочной (или генеральной) совокупности. Аргументом функции СРЗНАЧ является набор чисел, как правило, задаваемый в виде интервала ячеек, например, =СРЗНАЧ (А3:А201).

Дисперсия и среднее квадратическое отклонение.

Для оценки разброса данных используются такие статистические характеристики, как дисперсия D и среднее квадратическое (или стандартное) отклонение . Стандартное отклонение есть квадратный корень из дисперсии:
. Большое стандартное отклонение указывает на то, что значения измерения сильно разбросаны относительно среднего, а малое – на то, что значения сосредоточены около среднего.

В Excel имеются функции, отдельно вычисляющие выборочную дисперсиюD в и стандартное отклонение в и генеральные дисперсиюD г и стандартное отклонение г. Поэтому, прежде чем вычислять дисперсию и стандартное отклонение, следует четко определиться, являются ли ваши данные генеральной совокупностью или выборочной. В зависимости от этого нужно использовать для расчетаD г и г,D в и в .

Для вычисления выборочной дисперсии D в и выборочного стандартного отклонения в имеются функции ДИСП) и СТАНДОТКЛОН. Аргументом этих функций является набор чисел, как правило, заданный диапазоном ячеек, например, =ДИСП (В1:В48).

Для вычисления генеральной дисперсии D г и генерального стандартного отклонения г имеются функции ДИСПР и СТАНДОТКЛОНП, соответственно.

Аргументы этих функций такие же как и для выборочной дисперсии.

Объем совокупности.

Объем совокупности выборочной или генеральной – это число элементов совокупности. Функция СЧЕТ определяет количество ячеек в заданном диапазоне, которые содержат числовые данные. Пустые ячейки или ячейки, содержащие текст, функция СЧЕТ пропускает. Аргументом функции СЧЕТ является интервал ячеек, например: =СЧЕТ (С2:С16).

Для определения количества непустых ячеек, независимо от их содержимого, используется функция СЧЕТ3. Ее аргументом является интервал ячеек.

Мода и медиана.

Мода – это значение признака, которое чаще других встречается в совокупности данных. Она вычисляется функцией МОДА. Ее аргументом является интервал ячеек с данными.

Медиана – это значение признака, которое разделяет совокупность на две равные по числу элементов части. Она вычисляется функцией МЕДИАНА. Ее аргументом является интервал ячеек.

Размах варьирования. Наибольшее и наименьшее значения.

Размах варьирования R – это разность между наибольшимx max и наименьшим x min значениями признака совокупности (генеральной или выборочной):R =x max –x min . Для нахождения наибольшего значенияx max имеется функция МАКС (или MAX), а для наименьшегоx min – функция МИН (или MIN). Их аргументом является интервал ячеек. Для того, чтобы вычислить размах варьирования данных в интервале ячеек, например, от А1 до А100, следует ввести формулу: =МАКС (А1:А100)-МИН (А1:А100).

Отклонение случайного распределения от нормального.

Нормально распределенные случайные величины широко распространены на практике, например, результаты измерения любой физической величины подчиняются нормальному закону распределения. Нормальным называется распределение вероятностей непрерывной случайной величины, которое описывается плотностью

,

где
дисперсия, - среднее значение случайной величины .

Для оценки отклонения распределения данных эксперимента от нормального распределения используются такие характеристики как асимметрия А и эксцессЕ . Для нормального распределенияА =0 иЕ =0.

Асимметрия показывает, на сколько распределение данных несимметрично относительно нормального распределения: если А >0, то большая часть данных имеет значения, превышающие среднее ; еслиА <0, то большая часть данных имеет значения, меньшие среднего . Асимметрия вычисляется функцией СКОС. Ее аргументом является интервал ячеек с данными, например, =СКОС (А1:А100).

Эксцесс оценивает «крутость», т.е. величину большего или меньшего подъема максимума распределения экспериментальных данных по сравнению с максимумом нормального распределения. Если Е >0, то максимум экспериментального распределения выше нормального; еслиЕ <0, то максимум экспериментального распределения ниже нормального. Эксцесс вычисляется функцией ЭКСЦЕСС, аргументом которой являются числовые данные, заданные, как правило, в виде интервала ячеек, например: =ЭКСЦЕСС (А1:А100).

Задание 1. Применение статистических функций

Одним и тем же вольтметром было измерено 25 раз напряжение на участке цепи. В результате опытов получены следующие значения напряжения в вольтах: 32, 32, 35, 37, 35, 38, 32, 33, 34, 37, 32, 32, 35, 34, 32, 34, 35, 39, 34, 38, 36, 30, 37, 28, 30.Найдите выборочные среднюю, дисперсию, стандартное отклонение, размах варьирования, моду, медиану. Проверить отклонение от нормального распределения, вычислив асимметрию и эксцесс.

    Наберите результаты эксперимента в столбец А.

    В ячейку В1 наберите «Среднее», в В2 – «выборочная дисперсия», в В3 – «стандартное отклонение», в В4 – «Максимум», в В5 – «Минимум», в В6 – « Размах варьирования», в В7 – «Мода», в В8 – «Медиана», в В9 – «Асимметрия», в В10 – «Эксцесс». Выровняйте ширину этого столбца с помощью Автоподбора ширины.

    Выделите ячейку С1 и нажмите на знак «=» в строке формул. С помощью Мастера функций в категорииСтатистические найдите функцию СРЗНАЧ, затем выделите интервал ячеек с данными и нажмитеEnter .

    Выделите ячейку С2 и нажмите на знак «=» в строке формул. С помощью помощью Мастера функций в категорииСтатистические найдите функцию ДИСП, затем выделите интервал ячеек с данными и нажмитеEnter .

    Проделайте самостоятельно аналогичные действия для вычисления стандартного отклонения, максимума, минимума, моды, медианы, асимметрии и эксцесса.

    Для вычисления размаха варьирования в ячейку С6 следует ввести формулу: =МАКС (А1:А25)-МИН(А1:А25).

Основные статистические характеристики делят на две основные группы: меры центральной тенденции и характеристики вариации.

Центральную тенденцию выборки позволяют оценить такие статистические характеристики, как среднее арифметическое значение, мода, медиана.

Наиболее просто получаемой мерой центральной тенденции является мода. Мода (Мо) – это такое значение в множестве наблюдений, которое встречается наиболее часто. В совокупности значений (2, 6, 6, 8, 7, 33, 9, 9, 9, 10) модой является 9, потому что оно встречается чаще любого другого значения. В случае, когда все значения в группе встречаются одинаково часто, считают, что эта группа не имеет моды.

Когда два соседних значения в ранжированном ряду имеют одинаковую частоту и они больше частоты любого другого значения, мода есть среднее этих двух значений.

Если два несмежных значения в группе имеют равные частоты, и они больше частот любого значения, то существуют две моды (например, в совокупности значений 10, 11, 11, 11, 12, 13, 14, 14, 14, 17 модами являются 11 и 14); в таком случае группа измерений или оценок является бимодальной .

Наибольшей модой в группе называется единственное значение, которое удовлетворяет определению моды. Однако во всей группе может быть несколько меньших мод. Эти меньшие моды представляют собой локальные вершины распределения частот.

Медиана (Me) – середина ранжированного ряда результатов измерений. Если данные содержат четное число различных значений, то медиана есть точка, лежащая посередине между двумя центральными значениями, когда они упорядочены.

Среднее арифметическое значение для неупорядоченного ряда измерений вычисляют по формуле:

где . Например, для данных 4,1; 4,4; 4,5; 4,7; 4,8 вычислим :

.

Каждая из выше вычисленных мер центра является наиболее пригодной для использования в определенных условиях.

Мода вычисляется наиболее просто – ее можно определить на глаз. Более того, для очень больших групп данных это достаточно стабильная мера центра распределения.

Медиана занимает промежуточное положение между модой и средним с точки зрения ее вычисления. Эта мера получается особенно легко в случае ранжированных данных.

Среднее множество данных предполагает в основном арифметические операции.

На величину среднего влияют значения всех результатов. Медиана и мода не требуют для определения всех значений. Посмотрим, что произойдет со средним, медианой и модой, когда удвоится максимальное значение в следующем множестве:

Множество 1: 1, 3, 3, 5, 6, 7, 8 33/7 5 3

Множество 2: 1, 3, 3, 5, 6, 7, 16 41/7 5 3

На величину среднего особенно влияют результаты, которые называют “выбросами”, т.е. данные, находящиеся далеко от центра группы оценок.

Вычисление моды, медианы или среднего – чисто техническая процедура. Однако выбор из этих трех мер и их интерпретация зачастую требуют определенного размышления. В процессе выбора следует установить следующее:

– в малых группах мода может быть совершенно нестабильной. Например, мода группы: 1, 1, 1, 3, 5, 7, 7, 8 равна 1; но если одна из единиц превратится в нуль, а другая – в два, то мода будет равна 7;

– на медиану не влияют величины “больших” и “малых” значений. Например, в группе из 50 значений медиана не изменится, если наибольшее значение утроится;

– на величину среднего влияет каждое значение. Если одно какое-нибудь значение меняется на c единиц, изменится в том же направлении на c/n единиц;

– некоторые множества данных не имеют центральной тенденции, что часто вводит в заблуждение при вычислении только одной меры центральной тенденции. Особенно это справедливо для групп, имеющих более чем одну моду;

– когда считают, что группа данных является выборкой из большой симметричной группы, среднее выборки, вероятно, ближе к центру большой группы, чем медиана и мода.

Все средние характеристики дают общую характеристику ряда результатов измерений. На практике нас часто интересует, как сильно каждый результат отклоняется от среднего значения. Однако легко можно представить, что две группы результатов измерений имеют одинаковые средние, но различные значения измерений. Например, для ряда 3, 6, 3 – среднее значение = 4; для ряда 5, 2, 5 – также среднее значение = 4, несмотря на существенное различие этих рядов.

Поэтому средние характеристики всегда необходимо дополнять показателями вариации, или колеблемости.

К характеристикам вариации , или колеблемости , результатов измерений относят размах варьирования, дисперсию, среднее квадратическое отклонение, коэффициент вариации, стандартную ошибку средней арифметической.

Самой простой характеристикой вариации является размах варьирования . Его определяют как разность между наибольшим и наименьшим результатами измерений. Однако он улавливает только крайние отклонения, но не отражает отклонений всех результатов.

Чтобы дать обобщающую характеристику, можно вычислить отклонения от среднего результата. Например, для ряда 3, 6, 3 значения будут следующими: 3 – 4 = – 1; 6 – 4 = 2; 3 – 4 = – 1. Сумма этих отклонений (– 1) + 2 + (– 1) всегда равна 0. Чтобы избежать этого, значения каждого отклонения возводят в квадрат: (– 1) 2 + 2 2 + (– 1) 2 = 6.

Значение делает отклонения от средней более явственными: малые отклонения становятся еще меньше (0,5 2 =0,25), а большие – еще больше (5 2 = 25). Получившуюся сумму называют суммой квадратов отклонений . Разделив эту сумму на число измерений, получают средний квадрат отклонений, или дисперсию . Она обозначается s 2 и вычисляется по формуле:

.

Если число измерений не более 30, т.е. n ≤ 30, используется формула:

.

Величина n – 1 = k называется числом степеней свободы , под которым подразумевается число свободно варьирующих членов совокупности. Установлено, что при вычислении показателей вариации один член эмпирической совокупности всегда не имеет степени свободы.

Эти формулы применяются, когда результаты представлены неупорядоченной (обычной) выборкой.

Из характеристик колеблемости наиболее часто используется среднее квадратическое отклонение , которое определяется как положительное значение корня квадратного из значения дисперсии, т.е.:

.

Среднее квадратическое отклонение или стандартное отклонение характеризует степень отклонения результатов от среднего значения в абсолютных единицах и имеет те же единицы измерения, что и результаты измерения.

Однако для сравнения колеблемости двух и более совокупностей, имеющих различные единицы измерения, эта характеристика не пригодна.

Коэффициент вариации определяется как отношение среднего квадратического отклонения к среднему арифметическому, выраженное в процентах. Вычисляется он по формуле:

.

В спортивной практике колеблемость результатов измерений в зависимости от величины коэффициента вариации считают небольшой
(0 – 10 %), средней (11 – 20 %) и большой (V > 20 %).

Коэффициент вариации имеет большое значение в статистической обработке результатов измерений, т. к., будучи величиной относительной (измеряется в процентах), позволяет сравнивать между собой колеблемость результатов измерений, имеющих различные единицы измерения. Коэффициент вариации можно использовать лишь в том случае, если измерения выполнены в шкале отношений.

2.4.2. Анализ статистических данных в MS Excel. Инструменты анализа: описательная статистика, корреляция.

В состав электронных таблиц Microsoft Excel входит так называемый пакет анализа – набор инструментов, предназначенный для решения сложных статистических задач. Данный пакет производит анализ статистических данных с помощью макрофункций и позволяет, выполнив одно действие, получить на выходе большое количество результатов. В пакете анализа, имеющемся в Excel, среди прочих инструментов анализа имеется разделы «Описательная статистика» и «Корреляция».

Инструмент «Описательная статистика» позволяет нам получить значительный перечень рассчитанных статистических характеристик для большого количества числовых рядов. С помощью инструмента «Корреляция» мы получаем корреляционную матрицу, содержащую все возможные парные коэффициенты корреляции. Для k рядов будет получено k (k – 1)/2 коэффициентов корреляции.

Пакет анализа вызывается с помощью пункта меню Сервис – Анализ данных… Если этот пункт меню отсутствует, значит, пакет анализа не установлен. Для его установки надо вызвать пункт меню Сервис – Надстройки… и включить надстройку «Пакет анализа», ОК (см. рисунок 1).

Рисунок 1. Диалоговое окно включения/выключения надстроек

После включения надстройки «Пакет анализа» будет доступен пункт меню Сервис – Анализ данных… При его выборе появляется следующее диалоговое окно (рисунок 2).

Рисунок 2. Диалоговое окно выбора инструмента для анализа данных

После выбора инструмента «Описательная статистика» и нажатия ОК появится еще одно диалоговое окно (рисунок 3), требующее ввода входных данных и места вывода результатов. Здесь достаточно в поле «Входной интервал» ввести диапазон ячеек, содержащих исходные данные. Можно указать диапазон с заголовками столбцов, в этом случае потребуется включить флажок «Метки в первой строке». Для указания выходного интервала достаточно указать только левую верхнюю ячейку диапазона. Результаты вычисления автоматически займут требуемое количество строк и столбцов в таблице.

Рисунок 3. Диалоговое окно инструмента «Описательная статистика»

Рассмотрим работу инструмента анализа «Описательная статистика» на следующем примере. В процессе обследования группы школьников (n = 21) измерялись следующие показатели: рост, масса тела, динамометрия правой и левой руки, жизненная емкость легких, проба Штанге и проба Генчи. Результаты были занесены в таблицу (рисунок 4).

Для получения статистических характеристик воспользуемся пакетом анализа, инструментом «Описательная статистика». В поле «Входной интервал» занесем диапазон ячеек В1:Н22. Так как выделенный входной интервал содержит заголовки столбцов, включаем флажок «Метки в первой строке». Для удобства работы в качестве места выхода результата выбираем «Новый рабочий лист». В качестве выводимых данных отметим флажками «Итоговая статистика» и «Уровень надежности: 95 %». Последний флажок позволит вывести параметры доверительного интервала с доверительной вероятностью 0,95. Полученный результат после небольшого форматирования будет выглядеть так, как показано на рисунке 5.

Рисунок 4. Результаты обследования группы школьников

Рисунок 5. Результат работы инструмента «Описательная статистика»

После выбора инструмента «Корреляция» и нажатия ОК в диалоговом окне «Анализ данных» (рисунки 2, 6) появится еще одно диалоговое окно (рисунок 7), требующее ввода входных данных и места вывода результатов. Здесь достаточно в поле «Входной интервал» ввести диапазон ячеек, содержащих исходные данные. Можно указать диапазон с заголовками столбцов, в этом случае потребуется включить флажок «Метки в первой строке». Для указания выходного интервала достаточо указать только левую верхнюю ячейку диапазона. Результаты вычисления автоматически займут требуемое количество строк и столбцов в таблице.

Рисунок 6. Диалоговое окно выбора инструмента для анализа данных

Рисунок 7. Диалоговое окно инструмента «Корреляция»

Рассмотрим работу инструмента анализа «Корреляция» на примере, представленном на рисунке 4.

Для получения корреляционной матрицы воспользуемся пакетом анализа, инструментом «Корреляция». В поле «Входной интервал» занесем диапазон ячеек В1:Н22. Так как выделенный входной интервал содержит заголовки столбцов, включаем флажок «Метки в первой строке». Для удобства работы в качестве места выхода результата выбираем «Новый рабочий лист». Полученный результат после небольшого форматирования будет выглядеть так, как показано на рисунке 8.

Рисунок 8. Корреляционная матрица

Таким образом, путем выполнения несложных операций мы получаем большое количество результатов вычислений. Стоит отметить, что хотя информационные технологии открывают перед исследователем возможности получения огромного количества информации для анализа, отбор наиболее информативных результатов, окончательная интерпретация и формулировка выводов – работа самого исследователя.

Основные понятия корреляционного анализа экспериментальных данных. Оценка коэффициента корреляции по экспериментальным данным.

В спортивных исследованиях между изучаемыми показателями часто обнаруживается взаимосвязь. Вид ее бывает различным. Например, определение ускорения по известным данным скорости, второй закон Ньютона и другие характеризуют так называемую функциональную зависимость, или взаимосвязь, при которой каждому значению одного показателя соответствует строго определенное значение другого.

К другому виду взаимосвязи относят, например, зависимость веса от длины тела. Одному значению длины тела может соответствовать несколько значений веса и наоборот. В таких случаях, когда одному значению одного показателя соответствует несколько значений другого, взаимосвязь называют статистической .

Изучению статистической взаимосвязи между различными показателями в спортивных исследованиях уделяют большое внимание, поскольку это позволяет вскрыть некоторые закономерности и в дальнейшем описать их как словесно, так и математически с целью использования в практической работе тренера и педагога.

Среди статистических взаимосвязей наиболее важны корреляционные . Корреляция – это статистическая зависимость между случайными величинами, при которой изменение одной из случайных величин приводит к изменению математического ожидания (среднего значения) другой. Например, толкание ядра 3 кг и 5 кг. Улучшение результатов толкания ядра 3 кг вызывает улучшение (в среднем) результата в толкании ядра весом 5 кг.

Статистический метод, который используется для исследования взаимосвязей, называется корреляционным анализом . Основной задачей его является определение формы, тесноты и направленности взаимосвязи изучаемых показателей. Корреляционный анализ позволяет исследовать только статистическую взаимосвязь. Он широко используется в теории тестов для оценки их надежности и информативности. Различные шкалы измерений требуют разных вариантов корреляционного анализа.

Величина коэффициента взаимосвязи рассчитывается с учетом шкалы, использованной для измерений.

Для оценки взаимосвязи, когда измерения производят в шкале отношений или интервалов и форма взаимосвязи линейная, используется коэффициент корреляции Бравэ-Пирсона (коэффициенты корреляции для других шкал измерения в данном пособии не рассматриваются). Обозначается он латинской буквой – r. Вычисление значения r чаще всего производят по формуле:

,

где и – средние арифметические значения показателей x и y, и – средние квадратические отклонения, n – число измерений (испытуемых).

В некоторых случаях тесноту взаимосвязи определяют на основании коэффициента детерминации D, который вычисляется по формуле:

.

Этот коэффициент определяет часть общей вариации одного показателя, которая объясняется вариацией другого показателя. Например, коэффициент корреляции r = –0,677 (между результатами в беге на 30 м с ходу и тройном прыжке с места). Коэффициент детерминации равен:

Следовательно, 45,8 % рассеяния спортивного результата в тройном прыжке объясняется изменением результатов в беге на 30 м. Иными словами, на оба исследуемых признака действуют общие факторы, вызывающие варьирование этих признаков, и доля общих факторов составляет 45,8%. Остальные 100% – 45,8% = 54,2% приходятся на долю факторов, действующих на исследуемые признаки избирательно.

Оценить статистическую достоверность коэффициента корреляции – это значит определить, существует или нет линейная корреляционная связь между генеральными совокупностями или, что то же, установить, существенно или несущественно отличается от нуля коэффициент корреляции между выборками. Эта задача может быть решена с помощью таблиц критических точек распределения коэффициента корреляции в следующем порядке:

1. Выдвигаются статистические гипотезы. Гипотеза Н 0 предполагает отсутствие статистически значимой взаимосвязи между исследуемыми показателями (r ген =0). Гипотеза Н 1 предполагает, что существует статистически достоверная взаимосвязь между показателями (r ген >0).

2. Рассчитывается наблюдаемое значение коэффициента корреляции r набл .

3. Находится по таблице критическое значение коэффициента корреляции r крит в зависимости от объема выборки n , уровня значимости a и вида критической области (односторонняя или двусторонняя).

3. Сравнивается r набл и r крит .

Если r набл < r крит – статистически недостоверным (незначимым). Принимается гипотеза Н 0 Если r набл r крит , коэффициент корреляции считается статистически достоверным (значимым). Принимается гипотеза Н 1 .